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Abstract. A massively parallel supercamputer was nsed to exhaustively enumerate all of the 
Hamiltonian walks for simple cubic sublattices of four different sires (up to 3 x 4 x 4). The 
behaviour of the logarithm of the number of walks was found to be linear in the number of 
vertices in the lattice. The linear fit is shown to agree also with the asymptotic limit of the 
Floy mean field theoretical estimate Thus, we suggest that the fit obtained yields the number 
of walks for any size fragment of the cubic Imice to logarithmic accuracy. The significance of 
this result to the validily of polymer models is also discussed. 

A Hamiltonian walk is defined to be a walk over some graph such that each vertex is 
visited once and only once. In general, Hamiltonian walks are known to be one of the 
most challenging and important issues in graph theory. As for graphs of cubic sublattices, 
exhaustive enumeration of Hamiltonian walks is especially important in the physics of 
heteropolymers. Indeed, Hamiltonian walks on the sublattices are naturally identified with 
maximally compact conformations of polymer chains. In heteropolymers, such as proteins, 
there may be one single conformation, which is practically fully compact and which strongly 
dominates the partition function of the system. Thus, Monte Carlo sampling is not sufficient 
in this case, and exhaustive enumeration of conformations is required. 

This was first performed by Shakhnovich and Gutin [I] when enumerating the 103346 
Hamiltonian walks on the 3 x 3 x 3 cubic sublattice in order to verify the phase transition of 
heteropolymers predicted analytically. The fact that delicate effects of the analytic theory 
were reproduced shows that even a small sublattice can be an effective model. However, 
there are some properties not present in the 3 x 3 x 3 case, such as pseudo-knots. Thus, 
enumeration of even the 3 x 3 x 4 case (which includes pseudo-knots) can shed light on 
new physical properties. 

The enumeration algorithm is formulated as follows. We can consider any lattice in 
terms of the graph connecting the lattice sites. Consider all of the (not necessarily self- 
avoiding) walks of length N on an infinite lattice of coordination number z .  At each 
lattice point, we have z possible different directions to travel in order to reach a new site. 
These walks can be described as a tree of N levels with z branches at each node, each 
corresponding to a possible choice of direction to the next site. The enumeration of the 
possible walks is mereIy the counting of the number of branches of length N of this ‘ideal’ 
tree. We now impose the condition that the lattice is finite, say 1 x m x n .  We must now 
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remove the branches of the ideal tree which corresponds to walks that are not contained in 
the new boundaries (for example, the walk consisting of N steps in a single direction is 
no longer in the set of possible walks when I ,  m, n are less than N ) .  The addition of the 
constraint of self-avoidance further removes branches from the tree. We study the case of 
Hamiltonian walks, i.e. in the above notation N = 1 x m x n. Thus, the enumeration of 
all of the Hamiltonian walks is the counting of the number of branches of length N of this 
new ‘restricted‘ tree. 

In order to ascertain which sub-branches of the original ideal tree are removed, we 
must follow down the sub-branches of ,the ideal tree until we reach the end of the branch. 
A branch ends either when the walk is of length N or when there are no other possible 
sub-branches (for example, when a self-avoiding walk blocks itself off). Now, we back up 
one level of the tree and continue the procedure on a new sub-branch. In this way, all of 
the branches of the tree are exhaustively traversed in a very systematic manner. 

Figure 1. These WO 36-site walks are related by mirror symmeq.  Thus, only one is included 
in the enumeration procedure. 

Using the prescription above, there will be some walks related by symmetry (e.g. 
rotations and reflections). For example, consider the two walks shown in figure 1. They 
are related by symmetry, in this case a reflection. We do not wish to include both of 
these walks, so we used ‘starting paths’ which break all possible symmetries. We start 
enumeration, i.e. the traversal of the ideal tree, only for those sub-branches of the last node 
in each starting path. In this way, we remove branches related by symmetry. There are in 
fact many starting paths necessary for several reasons: (i) there are several different points 
(unrelated by symmetry) where one can start the walk; (ii) there are many symmetries to 
break. Therefore, we have devised an algorithm to generate these starting paths. This 
algorithm will be discussed in the appendix. 

Note that we have neglected one transformation: the reversal of the start and end of 
the walk. For heteropolymers, we want to include walks related by this symmetry, as the 
polymer sequences are not invariant with respect to sequence reversal. However, this may 
not be appropriate for other applications of Hamiltonian walks and should therefore be 
addressed accordingly. We also note that the arguments presented here and in the appendix 
can be easily modified to handle unusual lattices, such as unvisitable sites (used to model 
a ‘target site’ in polymer models), lattice dislocations, and other lattice aberrations, since 
unusual lattice topologies can be easily described in terms of the graph connecting the sites 
and the symmetries relating orientations of this graph. 
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The number of Hamiltonian walks increases exponentially with the number of vertices, 
so in order to gain the necessary computational speed to calculate the number of walks 
on larger sublattices, we employed two techniques. The most significant technique utilized 
was the use of a massively parallel computer (128-node Thinking Machines CM-5) and a 
parallel version of the tree enumeration algorithm. This parallel version used the method 
of ‘continuation-passing threads’ [3], i.e. which includes a random work-stealing scheduler 
able to assign subtrees to different processors and dynamically pass work (i.e. sub-branches 
to enumerate) to inactive processors as necessary. The throughput of the parallel algorithm 
was found to scale linearly with the number of processors. 

The second technique used was the addition of simple checks to see if we can end 
the search down a branch early. Each time a node is added to the walk, we check each 
neighbour of that node to see if it is surrounded by nodes which have already been visited. 
If so, then the node can never be visited, and if that node has not yet been visited, then the 
partial path produced so far can never lead to a valid walk; thus, we do not need to search 
down this path any further. Also, we keep track of how many unvisited nodes have only 
one unvisited neighbour. Clearly, in a successful walk, such a node must be the last node 
of the walk. So if we ever find two such nodes, we can safely stop the search down this 
partial path. These ‘blocked neighbour’ checks provided one to two orders of magnitude 
speed improvement over prior algorithms. 

These two improvements yielded sufficient computational power to enumerate the 
Hamiltonian walks on the 3 x 3 x 4 and 3 x 4 x 4 sublattices. The results are summarized 
in tables 1-3. 

10 20 30 40 5( 

N 

Figure 2. Logarithm of the number of wdks (M) versus the number of sites (N). for N = 18, 
U, 36.48. We see that the c w e  is essentially linear. 

With four lattice sizes ( N  = 18,27,36,48), it may be possible to see some trend in 
the number of walks (M) as a function of the number of lattice sites (N). In figure 2, the 
natural logarithm of the number of walks is plotted versus N .  We fitted a linear relation of 
the form 

InM = a  + BN (1) 
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Table 1. Summary of enumeration data, where N is lhe number of sites and M is the number 
of walks unrelated by symmetry. 

N M cwt imet  Shrtingp8ihs 

18 1711 (< 1 s 27 
27 103346 0.2 s 35 
36 84731192 5 &  816 
48 I34131827475 64 h 3579 

t CPU time given for 128-node CM-5. 

Table 2. Number of Hamiltonian walks for a 3 x 3 x 4 cubic s u b l ~ c e  for each different 
swting point unrelated by symmetr);. We use the following convention for numbering sics on 
an I x m x n sublattiee. p ( x ,  y, r )  = x t Iy t Imr. 

Site tvw S w i n e  site Number of walks 

Comer 0 2a 186048 
Short edge I 13648609 
Long edge 9 16166505 
Small face 4 5 298 397 
Large face IO 18287284 
runside 13 3 144349 

Total 84731 192 

Table 3. Number of Hamiltonian walks for a 3 x 4 x 4 cubic sublmice for each different smting 
point unrelated by symmeuy. 

Site type SMing site Number of walks 

Comer 0 31 323 890329 
Short edge I 9 646363521 
Long edge 3 42 177079725 
Small face 4 21460509753 
Large face 17 20883 800432 
Inside 16 8640183715 

Total I34 131 827475 

with (Y = -4.3 i 1.2 and p = 0.62 =k 0.04 (Rz  of the fit: 0.99). Note that while it is trivial 
to calculate the number of walks for N < 18 (i.e. N = 8 and 12), the inclusion of these 
points does not alter (within error) the linear fit or the arguments to follow; however, as 
discreteness effects should become great in these cases, we exclude them. Thus, we find 
that this fit works well for the region of small N S 48. 

On the other hand, the Rory 17.1 mean field calculation of the entropy of polymer melt is 
known to be applicable to the estimation of the number of compact globular conformations 
in the N --f 00 limit. Indeed, the conceptual foundation of the Flory treatment is !he 
restriction imposed on the addition of new monomers within the constraints of the avoidance 
of occupied sites and chain connectivity. This kind of argument is equally applicable to 
both a macroscopic melt of different long chains, and a large globule of one single chain, as 
the two systems differ only in the contributions of the independent chains mixing entropy, 
which is negligible in the long-chain melt, and of surface effects, which are negligible in 
the thermodynamic limit. Therefore, in the N -+ 00 limit we have the estimate 
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where z is the coordination number of the lattice. The question is, however, how large N 
should he to validate this approximation. This problem is similar in spirit to the nature of 
the convergence of other mean field theories, or even the central limit theorem. 

It turns out that in fact equations (1) and (2) agree very well, thus validating the 
extrapolation of equation (1) for the entire region of N + CO. We can formally transform 
equation (2) into equation (1) by saying that 

z = 1 +exp[l + p  +CY,"]. (3) 

In the N -P CO limit, we have z = 1 + exp[l + p].  Using our fit for p. we calculate 
z = 1 + exp[a] = 6.1 f 0.2, which compares well with the exact value of 6 for the simple 
cubic lattice. As equation (1) agrees with the results of exact enumeration in the regime 
N R. O(lOz) as well as the Flory theory in the N -+ CO limit, we suggest that equation (1) 
may be used to derive the number of walks for arbitray N to logarithmic accuracy. 

It is worthwhile to note that the point for N = 27 in figure 2 is definitely below the 
interpolation straight line. This might be related to the fact that this is the case for a 
maximally symmetric cubic shape. We are indebted to Dr A Gutin for the comment on a 
similar effect on the ZD lattice [6]. 

Thus, in terms of models of polymers, the polymeric entropy of small cubic lattice 
polymer models seems to be valid at least to the mean field approximation, and therefore the 
results which rely heavily on the nature of the conformations, such as heteropolymer theory, 
obtained from even small lattice models have some physical meaning. As one examines 
longer chains, the system smts to exhibit other physical properties, such as the presence 
of pseudo-trefoils in 36-mers [7] and more complicated topologies in larger sublattices. 
However, in these cases the effect of the lattice model in  modelling of polymer topology, 
for example, is unclear. 

for N = 64, it seems that the 
enumeration of the Hamiltonian walks on the 4 x 4 x 4 sublattice is several orders of 
magnitude out of reach using our current algorithm and supercomputer power. However, 
perhaps this estimate is slightly pessimistic, as sublattices with a cubic shape are expected to 
have less conformations than predicted by our fit. Also, the case N = 48, while possible to 
enumerate, is still extremely CPU time-consuming and therefore cannot be used routinely in 
any current polymer modelling scheme. However, enumeration of N = 36 is not very CPU 
time-consuming. Furthermore, there are fundamental differences between the previously 
enumerated case of N = 27 and N = 36, such as the presence of pseudo-knots. Thus, the 
use of the caSe N = 36 will allow much richer modelling of the thermodynamics of lattice 
polymers [SI. Finally, while the cases N = 64 and greater cannot even be enumerated at 
present, hopefully the estimate on the number of conformations given will be useful, for 
example in the analysis of Monte Carlo kinetics on cubic lattices [8,9]. 

In conclusion, as equation (1) yields M % 2 x 
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Appendix. Enumeration of starting paths 

We wish to enumerate the different paths which completely break all of the symmetries. 
First, we must enumerate all of the symmetries. Consider all of the vertices of the graph to 
be numbered consecutively. Any transformation (e.g. rotation, mirror inversion, etc.) can be 
expressed as a permutation of these indices. The number of transformations, and therefore 
permutations, is calculated as follows in terms of the number of ways a d-dimensional 
hypercube can be reoriented: (i) we first have the symmetry by the number of comers of 
the cube (2d); (ii) next, once we choose a corner to fix, we have d!  ways to choose how 
we mange the edges (for example, for d = 3, we have three ways to place the first edge, 
leaving two ways to place the second). Thus, there are d!Zd transformations for a simple 
hypercubic lattice in d dimensions. 

To generate the starting paths, we traverse the tree and compare sub-branches for 
symmetries. At each node, we transform the trajectories formed by each sub-branch 
using all of the enumerated transformations (i.e. applying all of the permutations). If any 
transformation can map one sub-branch into another, than the sub-branches are related by 
symmetry, and we can discard one of them. The remaining sub-branches themselves will 
now be enumerated using the same procedure. If none of the sub-branches are related by 
symmehy, and if all of the d!2d symmetries have been broken by the current path, then the 
current path is a starting path, and we can backtrack and continue the enumeration with the 
unexplored branches. 

For example, consider a walker starting from the corner of a cube. It is at the top of the 
tree of Hamiltonian walks. It now has three possible paths, but each path can be transformed 
into the other by a mirror symmetry. Thus, we can discard two of the sub-branches, choose 
the third, and continue the process. When none of the sub-branches of a given node are 
related by symmetry, then each sub-branch is a starting path. Then the walker backs up 
one level of the tree in order to traverse through the sub-branches left behind. 

The enumeration of all of the walks and the enumeration of the starting paths are deeply 
related. Each traverse the ideal tree, only differing when the walk has completed and when 
sub-branches are to be discarded. 
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